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Cells can sense and respond to very weak, but sometimes vital signals in the form of shallow
chemical gradients. It was recently suggested that single cells can amplify such weak signals by se-
creting degradatory enzymes which act to effectively screen the gradient and could possibly steepen
the local gradient perceived by single cells. However this effect was largely ignored in study of cell
chemotaxis. Here we revisit this effect with a focus on a well described Dictyostelium discoideum
cAMP chemotaxis system where cAMP signals are affected by an extracellular cAMP phosphodi-
esterase (PDE) and its inhibitor (PDI). Using a reaction-diffusion model of this set of interactions
in the extracellular space, we show that cells can effectively sense much steeper chemical gradients
than naively expected (up to a factor of 12). Next, we find that the rough estimates of experimental
PDE and PDI secretion rates are close to the optimal values predicted by our model. Finally, we
find that the cAMP screening length exhibits power-law scaling with both PDE and PDI secretion
rates and discuss how these results could be experimentally tested.

INTRODUCTION

Living cells must often sense and respond to extracellular
signals in the form of chemical gradients. In contrast to
temporal gradient sensing typical for small bacteria such as
E.coli [1], larger eukaryotic cells are able to sense chemical
gradients directly [2]. Well studied examples of eukaryotic
gradient sensing studies include chemotaxis in Dictyostelium
discoideum amoebae, neutrophils [3] and tumor cells [4, 5]
or chemotropic growth in Saccharomyces cerevisiae. Due to
its important role in life functions such as organ formation,
wiring of the nervous system, wound healing and cancer,
chemotaxis has become a tremendous area of research [4, 5].

Eukaryotic cells are often found to secrete enzymes that
inactivate or degrade the chemical signal in the extracel-
lular space. In particular, during cAMP (cyclic adeno-
sine monophosphate) chemotaxis D. discoideum cells se-
crete cAMP phosphodiesterase [6], neutrophils can inacti-
vate chemotactic formylmethionyl peptides [3] and S. cere-
visiae cells secrete Bar1 protease that degrades α-factor
pheromone signals that guide their growth towards their
mating partners. In addition to PDE, D. discoideum cells
secrete a PDE inhibitor (PDI) [7].

One function of enzymes such as PDE or Bar1 is to lower
the extracellular signal concentration, which is useful if the
signal concentration would saturate its receptors. More re-
cently, it has been suggested that these inactivating enzymes
have the additional function to amplify the signal by steep-
ening its chemical gradient in D. discoideum ([8], p.125) or
to improve the alignment of the gradient direction with the
nearest mating partner in S. cerevisiae [9–11]. Barkai et
al.[9] argued that the mechanism of signal degradation re-
sembles electrostatic screening by noting the analogy be-
tween steady-state diffusion equation and Laplace equation
for the electrostatic potential, but that in the case of S. cere-
visiae this effect does not provide an advantage when there
is only one mating partner.

In D. discoideum cAMP signals are relayed between cells
during the aggregation stage however to date, little effort has
been made to explain and quantify how the combined effect

of PDE and PDI exactly affects the local cAMP gradient
perceived by each D. discoideum cell. On the contrary, Nan-
jundiah and Malchow [12] argued using dimensional analysis,
that the extracellular PDE serves no purpose in cAMP sig-
naling involved in cell aggregation. More recently, authors in
[13–15] investigated the role of extracellular PDE and PDI in
the model of dynamical wave pattern formation and argued
that within the particular parameter range of their model,
PDE becomes important for aggregation at lower cell den-
sities [13, 14] and PDI becomes important in the formation
of spiraling wave patterns [15].

Experimentally, D. discoideum strains with inactive PDE
gene (PDE-null cells) have been shown to fail to aggregate
[16, 17], while strains with inactive PDI gene are slow to ag-
gregate and fail to produce spiral cAMP waves [15], which
are critical for establishing suitably large aggregation territo-
ries. The difficulty with interpreting the results from experi-
ments with PDE-null cells stems from the fact that the same
gene codes for both the extracellular and the membrane-
bound form of this enzyme. This makes it difficult to distin-
guish between the effects of each PDE form on the cAMP
gradient. While these earlier experiments with inactivated
PDE and PDI [15–17] are biologically relevant and imply
PDE and PDI may have roles in establishing spiral wave
patterns, they do not provide much quantitative insight into
how the biochemical reactions between cAMP, PDE and PDI
affect the cAMP gradient perceived by cells. For example, if
the extracellular PDE concentration doubles, how does the
gradient or cell response scale?

In this work, we focus on well characterized D. discoideum
gradient sensing and address this effect by developing two
models predicting the effective cAMP concentration profile
and its gradient, as a result of its interactions with PDE and
PDI. The models are centered around a set of six reaction-
diffusion equations for six chemical species: cAMP, PDE,
PDI, cAMP-PDE complex, PDE-PDI complex and 5’AMP,
a product of cAMP-PDE reaction. The calculations are done
for experimentally directly testable scenarios where static
cAMP gradients can be set up by diffusion in agarose-based
microfluidic devices [18–20], but the gradients can be af-
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fected by enzymes such as PDE or PDI. In one scenario
we assumed a uniform PDE concentration and no PDI, and
in another scenario we consider a more practical case where
both PDE and PDI are secreted from the stationary circular
cell with constant fluxes.

In other experimental arrangements employed recently
[21–23], static (time-independent) flowing gradients can be
set up by flow mixing where in principle anything secreted
by cells is swept away and the effect of PDE and PDI would
not be observed. Our discussion here casts doubt on the
applicability of such experiments to limitations of gradient
sensing in natural living systems.

RESULTS

Model 1. Uniform PDE concentration. As the first
and simplest model we consider a system of two interact-
ing molecules, PDE and cAMP, following Michaelis-Menten
kinetics and completely ignoring PDI:

PDE + cAMP
k1


k−1

COMPLEX k2⇀ PDE + 5′AMP (1)

where the COMPLEX represents the intermediate PDE-
cAMP complex and 5’AMP the product of this reaction,
which does not bind to D. discoideum cAMP receptors and
can be considered as a deactivated signal.

In modeling the cAMP-PDE reaction, we employ the stan-
dard quasi-steady state assumption [24], which assumes the
concentration of the intermediate complex does not change
on the time scale of product formation k1cp = (k−1+k2)Ccp,
where c, p and Ccp stand for cAMP, PDE and cAMP-
PDE complex concentrations, respectively. Since here we
consider the case of uniform PDE concentration, we set
p(x, t) = p0. Expressing all concentrations in units of
the Michaelis-Menten constant KM ≡ (k−1 + k2)/k1 and
spatial coordinates in units of characteristic lengths λ0 =√

(DKM )/(k2p0) ≈ 13µm (see SI), where D is the cAMP
diffusion constant 444 µm2/s [32], the cAMP equation in
steady state simplifies to:

∇2c− c = 0 (2)

The Eq.2 for cAMP concetration c(x) has the same form
as the equation for the electrostatic Coulomb potential
screened by charged particles in electrolytes [25], with the
screening length λ0. The same result was obtained previ-
ously by Barkai et al.[9]. The interpretation of this re-
sult is that it describes diffusion of cAMP molecules with
fixed probability of disappearing per unit time (represent-
ing the conversion to 5’AMP), described by lifetime τ =
KM/(k2p0) ≈ 0.4 s and screening length λ0 (a typical dis-
tance cAMP moves before being converted to 5’AMP).
Boundary conditions in 1D are taken as:

c(x = 0) = c0, c(x = a) = 0 (3)

and we set our system to span a length of ten characteristic
lengths, a = 10. Physically, this represents a cAMP source
at x = 0, and a drain “far” away at x = a. The analyti-
cal solution of Eq.2 with boundary conditions in Eq. 3 is

(derivation in SI):

c(x) = c0
sinh(a− x)

sinh(a)

For the 2D case, the solution was computed on a domain
defined by the difference between the rectangular domain
defined by 0 ≤ x ≤ 10λ0, −10λ0 ≤ y ≤ 10λ0 and a circle
centered at (x0, y0 = 0) with a diameter 1λ0, representing a
cell. The boundary conditions were:

c(x = 0, y) = c0, c(x = 10λ0, y) = 0

(−D∇c)y=−10λ0
= (−D∇c)y=10λ0

= (−D∇c)circle = 0

where the circular hole represents a cell impermeable to
cAMP. These boundary conditions are present in typical
microfluidic devices where the concentrations are experi-
mentally set by continuously flowing fixed concentrations of
cAMP through the microfluidic channels and the gradient
is established by diffusion through agarose gel [18, 26]. The
cAMP gradient was defined as the concentration difference
between front and the back of the cell, divided by its diam-
eter:

∇c ≡ c(x0 − r, y0)− c(x0 + r, y0)
2r

where (x0, y0) are the coordinates of the cell center. This
definition reflects a biologically relevant quantity which is
actually perceived by the cell, related to the concentration
difference between its front and back (Fig. 1a).

In order to quantify a possible gradient steepening, we
computed the ratio between the gradient in this model and
the constant gradient that would have been established with-
out PDE. In 1D the analytical result for this gradient ratio
is:

∇c
∇cnoPDE

= a · cosh(a− x)
sinh(a) ≈ aea

sinh(a)e
−x

with:

cnoPDE(x) = c0

(
1− x

a

)
, ∇cnoPDE = −c0

a

In the range 0 ≤ x ≤ a = 10 the gradient ratio is well
approximated by an exponential, as can be seen in Fig. 1.
Viewing cAMP as a molecule performing a random walk
with constant probability of disappearing per unit time in
1D, the probability of finding it drops exponentially as we
move away from the source.

The spatial range with steeper gradient ∇c > ∇cnoPDE
is shown in Fig.1 corresponding to x < 10λ0 −
arccosh[sinh(10λ0)/10λ0] ≈ 2.3λ0 where we used 5.2 nM as
a typical PDE concentration value [27] (see SI for details),
which gives λ0 ≈ 13µm. Therefore, this model predicts gra-
dient steepening in the range up to about 30 µm from the
cAMP source.

As the PDE concentration p0 is changed the solution for
the cAMP concentration and gradient is always qualitatively
the same and the screening length scales as a power law with
the PDE concentration: λ0 ∼ p−0.5

0 .



3

x [L]

∇
c(

x)
  /

 ∇
c n

oP
D

E

10−3

10−2

10−1

100

101

0 2 4 6 8 10

2D
1D

ba

x [L]

c(
x,

y)
=1

0

5.
62

3.
16

1.
78 1

0.
56

0.
32

0.
18 0.

1

0.
06

∇c

0 1 2 3 4 5 6

0

1

2

-2

-1

y 
[L

]

FIG. 1. a) Simulated steady state cAMP gradient on the cell,
expressed as the concentration difference between front and the
back of the cell, divided by its diameter. Only the range 0 ≤
x/λ0 ≤ 6, −3 . y/λ0 . 3 is shown. b) The gradient ratio
– cAMP gradient divided by the cAMP gradient without any
PDE. The net effect of uniform PDE profile in both 1D and 2D
is the gradient steepening in the range where ∇c > ∇cnoPDE,
corresponding to x . 30µm.

Model 2. Source of PDE and PDI. Here we give
a more realistic extension of a previous 2D model, and we
consider the fact that both PDE and PDI are in reality se-
creted by a cell. Assuming that the PDE-PDI interaction
follows a first-order protein-ligand binding [7], the two sets
of interactions are:

PDI + PDE
k′1


k′−1

COMPLEXip

PDE + cAMP
k1


k−1

COMPLEXpc
k2⇀ PDE + 5′AMP

Using a quasi steady state approximation (k−1 + k2)Cpc =
k1cp, expressing the concentrations in units of Kd (PDE-
PDI dissociation constant) and rescaling the length with a
characteristic length x/L → x (L =

√
Dc/k′−1) the steady

state form of these equations become (full derivation given
in SI):

∇2c = Kcp (4)
Dp

Dc
∇2p = pi− Cip (5)

−
DCip

Dc
∇2Cip = pi− Cip (6)

Di

Dc
∇2i = pi− Cip (7)

where the constant K is estimated to be on the order of 1
(see SI) and Dc, Dp, DCip

, Di are the diffusion constants
of cAMP, PDE, PDE-PDI complex and PDI, respectively.
The equation system was solved on a rectangular domain
given by 0 ≤ x ≤ 10L, −10L ≤ y ≤ 10L (here L = 100µm),
excluding a circle at coordinates (x0, y0 = 0) and a radius
r = 0.05L. The boundary conditions are given in Table I.
The constant PDE and PDI secretion rates were modeled

as constant flux boundary conditions on the internal circular
boundary with PDE and PDI fluxes defined as −Dp∇p =
p0, −Di∇i = i0 respectively. The model was then solved
by finite element method using COMSOL with MATLAB
(Comsol Inc.) by varying three parameters: cell position x0

(distance from cAMP source) PDE flux p0 and PDI flux i0
(see SI for details).

The quantity of interest is the cAMP gradient ratio which
tells us the factor by which the cAMP is steepened or flat-
tened compared to the case without PDE and PDI. It is
proportional to the cAMP gradient since the cAMP gradi-
ent without PDE/PDI is uniform due to the boundary con-
ditions. The cAMP gradient ratio as a function of x0, p0
and i0 is shown in Fig.2. We see that the gradient only for a
ceratin values of PDE/PDI fluxes and only in some spatial
range close to the cAMP source. The cAMP gradient can be
steepened up to a factor of 12 when the cell is 60µm away
from the cAMP source (x0 = 0.6L) and the steepening per-
sists even to distances of about 200µm away from the cAMP
source. However, while the color density plot in Fig.2 shows
for which combinations of x0, p0 and i0, it is difficult to read
out the functional dependence from colors.

The cAMP gradient ratio as a function of cell position is
shown in Fig.3a-c, therefore we notice that for a wide (but
not full) range of parameters the cAMP gradient is still char-
acterized by the exponential decay in a large spatial region,
similar to the screening effect found in the previous model.
We also show the cAMP gradient ratio as a function of PDE
and PDI in Fig.3d-f. These graphs correspond to vertical
or horizontal slices through Fig.2b. Lastly, we calculated
the cAMP screening lengths and their scaling as functions
of PDE and PDI flux and found a power law scaling and the
corresponding exponents in a certain range; see Fig.3g-i.

In the case of no PDI, the cAMP screening length scales
with PDE as λ ∼ p−1.04

0 in low flux range or λ ∼ p−0.54
0 in

high flux range. With PDI, in much of the range the PDE
scaling is λ ∼ p−0.78

0 , and the PDI scaling is λ ∼ i0.55
0 for

high flux range around the experimentally estimated value.

DISCUSSION

The effect of cell size on the gradient was considered previ-
ously in a system with static gradients established in flowing
microfluidic devices [28] and for non-flowing gradients in [29]
and also here (see SI). For static gradients, the presence of
a cell steepens the gradient by a factor of two. This effect
is also shown in Fig.2b, where the cAMP gradient ratio sat-
urates at a value of two instead of one, for small PDE and
PDI fluxes.

We used the previous experimental data [27, 30] to ob-
tain the rough estimates for PDE and PDI fluxes (see SI).
We obtained pexp0 = 0.02Kdk

′
−1L and iexp0 = 0.1Kdk

′
−1L for

PDE and PDI fluxes respectively, which are shown in Fig.2b
(as circles, indicating the large uncertainty of this estimate).
Based on this comparison in Fig.2b and Fig.3d-e, the PDE
flux is close to the optimal value predicted by the model in
a fairly large spatial region. The gradient steepening can
be achieved even without PDI, and according to Fig.2b, the
model predicts that varying PDI flux below iexp0 does not
affect the cAMP gradient perceived by cells. The PDI flux
also seems to be around its optimal value as shown in Fig.3f
either in the sense that it is in the most steep region of the
sigmoidal curve where it can have most effect on the gradient
or right at the optimal peak value at about 0.1Kdk

′
−1L. The
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Boundary cAMP PDE PDI PDE-PDI complex
conditions c(x, y) p(x, y) i(x, y) Cip(x, y)

left x = 0, y c(0, y) = c0 p(0, y) = 0 i(0, y) = 0 Cip(0, y) = 0

right x = 10L, y c(10L, y) = 0 p(10L, y) = 0 i(10L, y) = 0 Cip(10L, y) = 0

top, bottom x, y = ±10L −Dc∇c = 0 −Dp∇p = 0 −Di∇i = 0 −DCip∇Cip = 0

cell (x− x0)2 + y2 = (0.05L)2 −Dc∇c = 0 −Dp∇p = p0 −Dp∇p = i0 −DCip∇Cip = 0

TABLE I. Boundary conditions for Model 2. These reflect the conditions present in a typical no-flow microfluidic device where static
gradients are set by controlling concentrations of various chemical species in the two side channels (here denoted as left and right).

cells are therefore able to tune the extracellular cAMP gra-
dient at various distances from the cAMP source, by actions
of PDE and PDI.

The effects discussed here lead to different predictions be-
tween the chemotaxis responses in experiments with static
non-flowing gradients where cAMP gradients are affected
by secreted PDE and PDI [18–20] and the experiments with
static flowing gradients set up by flow mixing [21–23] and the
delicate PDE/PDI profiles are destroyed. In the light of our
findings here, the results of the flowing gradient experiments

should be reinterpreted.

The results from the models provided here can be further
experimentally tested. Using microfluidic devices recently
applied to D. discoideum chemotaxis [18] with static cAMP
gradients, one can measure the chemotaxis response that in-
cludes the interaction of extracellular PDE and PDI. This
response can then be matched to the same response obtained
with the microfluidic devices with flowing gradients [21, 22],
where the gradient at each cell’s position is completely con-
trolled and all secreted molecules (including PDE and PDI)
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FIG. 3. cAMP gradient ratio across the cell and the cAMP screening length. The left column (a,d,g) represents the results for the model
2 with no PDI flux i0 = 0, the center column (b,e,h) the results with the experimentally estimated value for PDI flux i0 = 0.1Kdk

′
−1L

and the right column the results with the experimentally estimated value for PDE flux p0 = 0.02Kdk
′
−1L. (a-c) cAMP gradient

ratio across the cell as a function of the distance from the cAMP source. Note that in each case there is a range where the cAMP
gradient (and, consequently, cAMP concentration) exhibits an exponential decay which demonstrates the screening effect as discussed
in the text. (d-e) cAMP gradient ratio across the cell as a function of PDE flux without PDI or with PDI, with cell position x0 as a
parameter. There are two different qualitative regimes: for distances x0 . 5L there exists optimal value of PDE flux that maximizes
the gradient ratio; for larger distances there is no such behavior and any PDE actually flattens the cAMP gradient. Experimental
estimate p0 = 0.02Kdk

′
−1L is very close to the optimal peak value predicted by the model. (f) cAMP gradient ratio across the cell

as a function of the PDI flux. There are three qualitatively different regimes: I. sigmoidal behavior for x0 . 1.4L, II. existence of the
optimal PDI flux for 1.4L . x0 . 5L and III. flattening of the cAMP gradient for x0 & 5L. Both the threshold value and the optimal
peak value correspond to the experimental estimate i0 = 0.1Kdk

′
−1L. (g-h) Power-law scaling of the cAMP screening length with

PDE, with different scaling exponents that distinguish the case (g) with no PDI and (h) with PDI. (i) cAMP screening length as a
function of PDI flux showing the power-law scaling in the range around its experimental estimate.

are flushed away (see SI for Peclet number arguments). Us-
ing both of these results, one could infer the effective cAMP
concentration and the gradient in the no-flow system with
PDE and PDI present. Since wild-type D. discoideum cells
secrete cAMP as well, it may be more convenient to use
a strain defective in cAMP secretion. Finally, one should
not neglect possible and very informative chemotaxis exper-

iments which could be performed with overexpressing PDE
and PDI mutants (see e.g. [33]). Using these mutants, one
can experimentally vary PDE or PDI secretion rates and
search for any of the scaling exponents in the models pre-
sented here.

In conclusion, the models presented here show that cells
can in principle steepen an external chemical gradient by se-
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creting degredatory enzymes. We show that this is a quite
significant effect; gradients can be steepened up to a factor
of 12. This important effect has been previously neglected
in both theoretical models (for a comprehensive review see
[34]) and experiments with static non-flowing gradients such
as ones in [19, 20, 26], because of the possibility that local
gradients may significantly differ from ones in a gradient
chamber free of cells. Furthermore, the recently developed
microfluidic devices with flowing gradients [21–23] may in
fact be destroying these delicate extracellular chemical struc-
tures. In the particular example of D. discoideum amoebae
detecting the cAMP gradient, we find that the experimental
secretion rates of PDE (protein that degrades cAMP) and
PDI (protein that inhibits PDE) roughly correspond to the
optimal values predicted by the second model; see circles in
Fig.2.

PDE might have other functions not related to the gra-
dient steepening. For example, Hecht et. al. [35] discussed
the problem of amoeboid chemotactic navigation in a maze-
like environments and concluded that by secreting its own
chemorepellent, amoebae can avoid being trapped and navi-
gate around small obstacles. While such autocrine signaling
chemorepellent has not been found, we hypothesize that an
extracellular PDE can be used to achieve the same goal.
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Supplementary information
Model 1 derivation
As a first and simplest step we only consider the PDE secretion while completely ignoring PDI. We consider a system of
two interacting molecules, PDE and cAMP, following a classic Michaelis-Menten kinetics:

PDE + cAMP
k1


k−1

COMPLEX k2⇀ PDE + 5′AMP (1)

where COMPLEX represents the intermediate PDE-cAMP complex and 5’AMP the product of this reaction. 5’ AMP
does not bind to Dictyostelium cAMP receptors and can be considered as a deactivated signal.

We have the following dynamical equations for the concentrations of cAMP c(x, t), PDE p(x, t), cAMP-PDE complex
Ccp(x, t) and the 5’AMP c′(x, t):

∂c

∂t
= Dc∇2c− k1cp+ k−1Ccp

∂p

∂t
= Dp∇2p− k1cp+ (k−1 + k2)Ccp

∂Ccp

∂t
= DCcp∇2Ccp + k1cp− (k−1 + k2)Ccp

∂c′

∂t
= Dc′∇2c′ + k2Ccp

where Dc, Dp, DCcp
and Dc′ are the diffusion constants of cAMP, PDE, cAMP-PDE complex and 5’AMP respectively.

At this point, it is typical to employ the quasi-steady state assumption [1], which assumes the concentration of the
intermediate complex does not change on the time scale of product formation:

k1cp = (k−1 + k2)Ccp

Ccp = cp

KM
, KM ≡

k−1 + k2

k1

so the equations simplify to:

∂c

∂t
= Dc∇2c− k1cp+ k−1

cp

KM

∂p

∂t
= Dp∇2p

∂Ccp

∂t
= DCcp∇2Ccp

∂c′

∂t
= Dc′∇2c′ + k2

cp

KM

and the first equation for cAMP further simplifies to:

∂c

∂t
= Dc∇2c+ cp

(
k−1 − k1KM

KM

)
∂c

∂t
= Dc∇2c+ cp

(
k−1 − k−1 − k2

KM

)
∂c

∂t
= Dc∇2c− k2

KM
cp

In this model we look at the case where the PDE concentration is uniform in space p(x) = p0, giving us the following
equation for cAMP profile in the steady state:

Dc∇2c− k2p0

KM
c = 0

In order to make the variables dimensionless, we further make the following substitutions:

L ≡

√
DcKM

k2p0
,
x

L
→ x,

c

KM
→ c

1



and the equation becomes:
∇2c− c = 0 (2)

where the cAMP concentration c is now expressed in units KM , and the spatial coordinate in units of the characteristic
length L. Numerically, this length is estimated:

L =

√
DcKM

k2p0
=

√
444 µm2/s× 10 µM

5000/s× 5.2 nM = 13 µm

1D system
Boundary conditions are taken as c(x = 0) = c0 and c(x = a) = 0, and we set our system to span ten characteristic
lengths, a = 10. Physically, this represents a cAMP source at x = 0, and a drain “far” away at x = a. The equation 2 has
the general solution: c(x) = Aex +Be−x and with our boundary conditions c(x = 0) = c0, c(x = a) = 0 we have:

c(x = 0) = A+B = c0 c(x = a) = Aea +Be−a = 0
B = c0 −A Aea = −Be−a

c0 −A = −Ae2a

A(e−2a + 1) = c0

A = c0

1− e2a

B = c0 −A = c0 − c0e
2a − c0

1− e2a
= −c0

e2a

1− e2a

c(x) = c0

1− e2a
ex + (−c0)e2a

1− e2a
e−x

c(x)1− e2a

c0
= ex − e2ae−x�× e−a

c(x)
c0

[
e−a − ea

]
= ex−a − e−(x−a)

c(x)
c0

[−2 sinh(a)] = 2 sinh(x− a)

c(x) = c0
sinh(a− x)

sinh(a)
where a is the system size. Without any PDE, the concentration and the gradient are given by:

c(x) = c0

(
1− x

a

)
dc

dx
= −c0

a

With uniform PDE, the gradient and the gradient ratio are then:

dc

dx
= −c0 cosh(a− x)

sinh(a)

∇c
∇cnoPDE

=
− c0 cosh(a−x)

sinh(a)

− c0
a

= a · cosh(a− x)
sinh(a)

2
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Figure 1: Boundary conditions for cAMP in the Model 1 with uniform PDE concentration.

2D system
2D system was solved by numerically finding the solution of the equation:

∇2c− c = 0 (3)

in a system with dimensions of 10L× 20L with the following boundary conditions:

c(x = 0, y) = c0

c(x = 10, y) = 0
(−Dc∇c)x,y=10 = 0

(−Dc∇c)x,y=−10 = 0
(−Dc∇c)circle = 0

as shown in Fig. 1. The circular boundary models the cell at position (x, y) = (x0, 0) and as modelled as an insulating
boundary with the diffusive flux at its boundary to be zero.

Model 2 derivation, 2D system
We start by writing the dynamical equations for all chemical species c = [cAMP], Cpc = [COMPLEXpc], c′ = [5’AMP],
p = [PDE], Cip = [COMPLEXip] and i = [PDI] in a 2D system. PDE and PDI sources are modeled as a constant flux
boundary at the circle positioned at (x0, 0) of radius r = 0.05L ≈ 0.05× 100µm = 5µm:

∂c

∂t
= Dc∇2c− k1cp+ k−1Cpc (4)

∂Cpc

∂t
= DCpc

∇2Cpc + k1cp− (k−1 + k2)Cpc (5)

∂c′

∂t
= Dc′∇2c′ + k2Cpc (6)

∂p

∂t
= Dp∇2p− k1cp+ (k−1 + k2)Cpc

−k′1pi+ k′−1Cip (7)
∂Cip

∂t
= DCip

∇2Cip + k′1pi− k′−1Cip (8)

∂i

∂t
= Di∇2i− k′1pi+ k′−1Cip (9)

3



In the quasi steady-state approximation of Michelis-Menten kinetics we take:

k1cp− (k−1 + k2)Cpc = 0

from where it follows:
Cpc = k1cp

k−1 + k2
= cp

KM

and equations 4-9 simplify to the following:

∂c

∂t
= Dc∇2c− k2

KM
cp

∂Cpc

∂t
= DCpc∇2Cpc

∂p

∂t
= Dp∇2p− k′1pi+ k′−1Cip

∂Cip

∂t
= DCip

∇2Cip + k′1pi− k′−1Cip

∂i

∂t
= Di∇2i− k′1pi+ k′−1Cip

At this point we leave out the equations for c′ and Cpc, as they are uncoupled from the other equations. In order to make
all the variables in these equations dimensionless, we can divide all equations by k′−1 (the inverse of the mean time of the
dissociation of PDE-PDI complex):

1
k′−1

∂c

∂t
= Dc

k′−1
∇2c− k2

k′−1KM
cp

1
k′−1

∂p

∂t
= Dp

k′−1
∇2p− k′1

k′−1
pi+ Cip

1
k′−1

∂Cip

∂t
=

DCip

k′−1
∇2Cip + k′1

k′−1
pi− Cip

1
k′−1

∂i

∂t
= Di

k′−1
∇2i− k′1

k′−1
pi+ Cip

and now using the substitutions k′−1t→ t and k′−1/k
′
1 ≡ Kd and dividing all equations by Kd:

1
Kd

∂c

∂t
= Dc

Kdk′−1
∇2c− k2Kd

k′−1KM

cp

KdKd
(10)

1
Kd

∂p

∂t
= Dp

Kdk′−1
∇2p− 1

K2
d

pi+ 1
Kd

Cip (11)

1
Kd

∂Cip

∂t
=

DCip

Kdk′−1
∇2Cip + 1

K2
d

pi− 1
Kd

Cip

1
Kd

∂i

∂t
= Di

Kdk′−1
∇2i− 1

K2
d

pi+ 1
Kd

Cip (12)

Using the substitutions c/Kd → c, p/Kd → p, Cip/Kd → Cip, i/Kd → i, and simplifying the dimensionless factor in the
Eq. 10:

k2Kd

k′−1KM
= k2

KMk′1
(13)

we have:
∂c

∂t
= Dc

k′−1
∇2c− k2

KMk′1
cp

∂p

∂t
= Dp

k′−1
∇2p− pi+ Cip

∂Cip

∂t
=

DCip

k′−1
∇2Cip + pi− Cip

∂i

∂t
= Di

k′−1
∇2i− pi+ Cip
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∂c

∂t
= Dc

k′−1
∇2c− k2

KMk′1
cp

∂p

∂t
= Dp

Dc

Dc

k′−1
∇2p− pi+ Cip

∂Cip

∂t
=

DCip

Dc

Dc

k′−1
∇2Cip + pi− Cip

∂i

∂t
= Di

Dc

Dc

k′−1
∇2i− pi+ Cip

Here we substitute: x2k′−1/Dc → x2 (x)

∂c

∂t
= ∇2c− k2

KMk′1
cp (14)

∂p

∂t
= Dp

Dc
∇2p− pi+ Cip (15)

∂Cip

∂t
=

DCip

Dc
∇2Cip + pi− Cip (16)

∂i

∂t
= Di

Dc
∇2i− pi+ Cip (17)

Using Table 2, we estimate the numerical value of the dimensionless constant in the cAMP equation:

K ≡ k2

KMk′1
= 5000 s−1

10× 103nM 5× 10−1nM−1s−1
= 1

A characteristic length scale related to cAMP is given by L ∼
√
Dc/k′−1 =

√
(444µm2/s)/(0.05/s) ≈ 100µm, which is

about 10 cell diameters. Another characteristic length scale is L2 ∼
√
Dc/(KMk1) =

√
(444µm2/s)/(5000/s) ≈ 0.3µm.

This length scale is much smaller than the cell diameter and will not play a significant role in this model. The final set of
equations that was solved numerically in steady state is then:

∇2c = Kcp (18)
Dp

Dc
∇2p = pi− Cip (19)

DCip

Dc
∇2Cip = −pi+ Cip (20)

Di

Dc
∇2i = pi− Cip (21)

where the constant K was already estimated to be on the order of 1. The boundary conditions are shown in Fig.2.
For the simpler case where there is no PDI (and consequently PDE-PDI complex), the equations further simplify to:

∇2c = Kcp (22)
∇2p = 0 (23)

Numerical estmation of diffusion constants
Diffusion constants for PDE, PDI and PDE-PDI complex were estimated using the Stokes-Einstein equation for spherical
particles following the approach by Tyn and Gusek [3, 4], who provided the following equation for globular proteins:

D[cm2/s] = 9.2 · 10−8T [K]
η[mPas] · (Mr[Da])1/3

where T [K] is the absolute temperature in Kelvins, ηT =293.15K
water = 1mPas is the dynamic viscosity of water at 20◦C and

Mr[Da] molecular mass. The results are given in Table 1.

Biochemical constants
The kinetic parameters used in these models are given in Table 2.
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Figure 2: Boundary conditions for Model 2 with a source of PDE and PDI modeled as a constant flux boundary.

Mr[Da] D[µm2/s]

PDE 57,500 70
PDI 47,000 74

PDE-PDI complex 104,500 57

Table 1: Estimated diffusion constants of PDE, PDI and PDE-PDI complex.

Numerical estimation of PDE and PDI secretion rates
PDE secretion
In [5], the authors detected 0.6 mg of PDE (Mr = 55, 000−60, 000, so we take 57,500 as the mean) secreted byNC = 8×1010

cells in t = 13 hours (780 min) in 2l suspension volume. The molar quantity of PDE was:

n = m

M
= 6× 10−4 g

57, 500 g/mol = 6× 10−4g
5.75× 104g/mol

= 1.04× 10−8mol = 10.4 nmol

and the concentration of PDE in the extracellular environment was (this number is used for Model 1 only):

[PDE] = n

V
= 10.4 nmol

2 l = 5.2 nM

6



parameter symbol value reference/equation
cAMP diffusion constant Dc = 444 µm2/s [8]
PDE diffusion constant Dp = 70 µm2/s estimated
PDI diffusion constant Di = 74 µm2/s estimated
PDE-PDI complex diffusion constant DCip = 57 µm2/s estimated

PDE-cAMP

Michaelis-Menten constant KM = 10 µM [9]
Michaelis-Menten constant Kapp

M = 1 mM (with PDI)
association constant k1 = 0.5 nM−1s−1 estimated [10]
turnover number k2 = 5000 s−1 ∼ KMk1

PDI-PDE
dissociation constant Kd = 0.1 nM [6]
dissociation rate k′−1 = 0.05 s−1 = k′1Kd

association rate k′1 = 0.5 nM−1s−1 estimated [10]

Table 2: Numerical values for constants. The association constant k1 and the association rate k′1 are often limited
by the rate of collisions of a diffusing molecule encountering a protein-sized target and typically have values of about
0.1− 1 nM−1s−1 [10], so we took the average of 0.5 nM−1s−1.

The flux due to this secretion is obtained by calculating the molar quantity of PDE molecules passing through the cell
surface area (cell being considered a sphere of radius r = 5µm) per unit time:

p0(measured) ≡ n/NC

A× t
= 1.3× 10−10 nmol

4π (5µm)2 × 780min

= 1.3× 10−19mol
314µm2×780 min

= 5.3× 10−6−19 mol
µm2min

= 5.3× 10−25 mol
µm2min

where (n/NC)/t is the molar quantity of PDE produced by each single cell during the time t. Throughout this model,
we use units of Kd = 0.1 nM for concentrations, characteristic length scale L = 100µm for lengths and 1/k′−1 = 20 s for
times. Dissociation constant is then:

1Kd = 10−10 mol
l = 10−10 mol

1015µm3

= 10−25 mol
µm3

In these units, the PDE flux is:

p0(measured) = 5.3× 10−25 molµm
µm3min

= 5.3 Kd × 10−2L

3
(
1/k′−1

)
= 1.76× 10−2 Kdk

′
−1L

= 17.6×
(
10−3 Kdk

′
−1L

)
≈ 0.02Kdk

′
−1L

7



With Kd = 0.1 nM, k′−1 = 0.05 s−1 and L = 100µm:

Kdk
′
−1L = 0.1× 10−9mol

1015 µm3 · 0.05 s−1 · 102 µm

= 10−1−9−15 · 6 · 1023 · 5 · 10−2 · 102 molecules
µm2 · s

= 30 · 10−2 molecules
µm2 · s

= 0.3 molecules
µm2 · s

PDI secretion
In [6], the authors note that PDI activity was 500 units/ml, that 2500 units of PDI correspond to about 0.12 nmol (with
Mr = 47, 000), and that the cell density was cC = 2.6 × 107 cells/ml. The concentration of PDI in the extracellular
medium is therefore:

[PDI] = 500 units
ml ×

0.12 nmol
2500 units = 0.024 nmol

ml = 24nM

Total molar quantity of PDI in the entire volume was:

n = [PDI]× V = 0.024 nmol
ml × 700 ml = 16.8 nmol

We can also estimate the PDI concentration by a different method. Using the experimental fact that the PDI acts as a
competitive inhibitor [6], we can estimate the concentration of PDI using the equation for the apparent Kapp

M [7]:

Kapp
M = KM

(
1 + [PDI]

Kd

)
and given Kapp

M = 1mM, KM = 10µM and Kd = 0.1nM (see Table 2), we obtain:

Kapp
M

KM
= 1 + [PDI]

Kd

[PDI] = Kd

(
Kapp

M

KM
− 1
)

= 0.1 nM
(

103µM
10µM − 1

)
≈ 10 nM

which is relatively close to the previous rough estimate of 24 nM. Here we take the average of these two values to obtain
17 nM. The corresponding value for the molar quantity of PDI is n = 17nM× 0.7l ≈ 12 nmol. The total cell number was:

NC = cCV = 2.6× 107 cells
ml × 700 ml = 1.82× 1010 cells

Since the cells were starved and produced PDI for about 13 hours (780 minutes), the PDE flux for each cell is:

i0(measured) ≡ n/NC

A× t
= 6.6× 10−10 nmol

4π (5µm)2 × 780min

= 6.6× 10−10mol
314µm2×780 min

= 2.7× 10−5−19 mol
µm2min

= 27× 10−25 mol
µm2min

8



In our units of Kd = 0.1 nM for concentrations, characteristic length scale L = 100µm for lengths and 1/k′−1 = 20 s for
times, the PDI flux is (with 1Kd = 10−25mol/µm3):

i0(measured) = 27× 10−25 molµm
µm3min

= 27 Kd × 10−2L

3
(
1/k′−1

)
= 9× 10−2 Kdk

′
−1L

= 90×
(
10−3 Kdk

′
−1L

)
≈ 0.1Kdk

′
−1L

Finite Element Method
We solved the set of differential equations 18-21 using Finite Elements Method, where we used COMSOL Multiphysics
v3.5 (Comsol Inc.) using the custom script that connects to COMSOL through the MATLAB interface. We used Chemical
Engineering / Diffusion module, specified the model numerically in MATLAB, then found the steady-state solutions using
the built-in stationary solver. The domain was meshed with triangular domains where the maximum mesh size was chosen
at most 0.5 L. Depending on the model parameters, COMSOL could not occassionaly found a solution with 0.5 L mesh
size, so for those cases we lowered to either 0.1 L or 0.5 L. An example of typical meshing with 0.5 L maximum mesh
size is shown in Fig.3. We used stationary non-linear PDE solver femstatic() to find the solution. The data was further
analyzed and plotted in R [11].

Calculation of cAMP screening lengths and its scaling
The cAMP gradient ratio was log-transformed and an exponential length was found by a linear least-square fit between
log-transformed cAMP gradient ratio and the position, x0.

cAMP screening length as a function of PDE flux in the case of no PDI was fit to power laws, as follows: the values
10−5 Kdk

′
−1L ≤ p0 ≤ 4 · 10−3 Kdk

′
−1L were fit to one exponent and 4 · 10−3 Kdk

′
−1L ≤ p0 ≤ 100 Kdk

′
−1L to second

exponent, and for both we estimated the exponential screening length in the spatial range 1 ≤ x0/L ≤ 6.
cAMP screening length as a function of PDI flux was calculated for values 1 ≤ x0/L ≤ 6 and 10−6 Kdk

′
−1L ≤ i0 ≤

100 Kdk
′
−1L and a line was fit on a log-log plot for the range 0.08Kdk

′
−1L ≤ i0 ≤ 1Kdk

′
−1L, with the slope 0.55 ± 0.01

indicating a possible power law scaling.

Effects of cell size
We estimated the effects of cell size on the gradient perceived by the cell in the same way as authors in [12]. We also
estimated the gradient enhancement by a factor of two is due to the effects of cell shape as shown in Fig. 4.

Peclet number arguments for flowing gradient experiments
Peclet number is a dimensionless measure of the ratio of the advective to diffusive transport, defined by:

Pe = vl

D

where D is the diffusion coefficient of the molecule in question, v the flow velocity and l the characteristic length. For
a cAMP diffusion with diffusion coefficient of about 400µm2/s, typical flow rates around 600µm/s, so the diffusion
dominates (Pe� 1) only for length scales l� 1.5µm.
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