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High fidelity information processing
in folic acid chemotaxis of
Dictyostelium amoebae

Igor Segota, Surin Mong, Eitan Neidich, Archana Rachakonda,
Catherine J. Lussenhop and Carl Franck

Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853, USA

Living cells depend upon the detection of chemical signals for their existence.

Eukaryotic cells can sense a concentration difference as low as a few per cent

across their bodies. This process was previously suggested to be limited

by the receptor–ligand binding fluctuations. Here, we first determine the

chemotaxis response of Dictyostelium cells to static folic acid gradients and

show that they can significantly exceed this sensitivity, responding to gradi-

ents as shallow as 0.2% across the cell body. Second, using a previously

developed information theory framework, we compare the total information

gained about the gradient (based on the cell response) to its upper limit:

the information gained at the receptor–ligand binding step. We find that

the model originally applied to cAMP sensing fails as demonstrated by the

violation of the data processing inequality, i.e. the total information exceeds

the information at the receptor–ligand binding step. We propose an extended

model with multiple known receptor types and with cells allowed to perform

several independent measurements of receptor occupancy. This does not vio-

late the data processing inequality and implies the receptor–ligand binding

noise dominates both for low- and high-chemoattractant concentrations.

We also speculate that the interplay between exploration and exploitation

is used as a strategy for accurate sensing of otherwise unmeasurable levels

of a chemoattractant.
1. Introduction
Eukaryotic amoebae Dictyostelium discoideum (referred as Dictyostelium) in

the vegetative state forage on bacteria by following gradients of folic acid

(FA), a by-product of bacterial metabolism [1,2]. It is currently believed that

Dictyostelium measure chemical gradients directly by monitoring the distri-

bution of the occupied chemoattractant receptors. These cells can detect

concentration differences as low as a few per cent across their cell bodies

[3–8] and it is currently an open question what exactly limits this process.

Previously, the receptor–ligand binding fluctuations were suggested as the

limiting factor, which remains a possibility because a single excited receptor

may amplify the signal by activating multiple G-proteins [9–11].

The chemotaxis signalling system can be described as the following Shannon

communication channel [12,13]: the chemoattractant gradient direction as the

input, the spatial distribution of occupied receptors as the intermediate step

and the direction of cell motion as the output. Fuller et al. [4] recently exploited

this information-theoretic framework, where a cell in a static gradient was mod-

elled as N receptors arranged in a circle, each in chemical equilibrium with the

local chemoattractant concentration, described by a dissociation constant Kd.

The joint state of all receptors urec was assumed to depend only on the

gradient direction, ugrad. Likewise, the probability of a cell moving in a direction

ures was assumed to depend only on urec, with these three variables forming a

Markov chain: Qgrad! Qrec! Qres (see the electronic supplementary material).

Capital greek letters denote random variables and lowercase greek letters their

values. Fuller et al. [4] computed the mutual information between the gradient
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Figure 1. Measured chemotaxis response for a range of gradients and mean concentrations. (a) Distribution of cell displacement angles for the peak response for
the gradient dc/dx ¼ 1.6 nM mm21 and mean concentration c0 ¼ 2500 nM. Each radial step represents 15 data points. (b) CI for experiments with variable FA
concentration in the top channel, which changed both the mean concentration and the gradient. The controls denote CI for experiments performed with no gradient
with mean FA concentrations of 0, 2500 and 10 000 nM. The error bars and grey area denote standard error of the mean (s.e.m.).
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direction and the receptor distribution Iext(Qgrad,Qrec), ‘external

mutual information’. Iext quantifies the information gained

about the gradient through a perfect (noiseless) readout of

the occupied receptors.

Furthermore, Fuller et al. [4] used Dictyostelium cAMP

chemotaxis experiments to calculate the mutual informa-

tion between the gradient direction and the cell response

Itot(Qgrad, Qres), ‘total mutual information’. Itot quantifies the

information gained about the gradient by cells through

the imperfect (noisy) readout of the occupied receptors. The

data processing inequality [14, p. 34] states that in a Markov

chain of variables, information can only be destroyed in each

subsequent step, which here translates into Itot� Iext. In other

words, the information gained by cells after being proces-

sed through the entire signalling pathway, cannot exceed the

information gained at the receptor level. Fuller et al. [4] then

argued that for low cAMP concentrations the receptor–

ligand binding fluctuations dominate the entire noise (Itot �
Iext), because there is no further information loss downstream.

Previously, Ueda & Shibata [11] also reached this conclusion

using signal-to-noise ratio arguments, using stochastic recep-

tor noise and time integration with second messengers and

locomotion systems.

Here, we measure the response of a population of

Dictyostelium cells to static linear FA gradients, establis-

hed in an agarose gel-based microfluidic device [15]. The

steady-state gradients were achieved by maintaining fixed

concentrations of FA on opposite sides of a microfluidic chan-

nel (see the electronic supplementary material). A linear

gradient was established by diffusion through agarose

gel. Cell migration was recorded using time-lapse optical

microscopy. The measured distribution of cell displacement

angles p(uresjugrad) was used to calculate the total mutual

information Itot and compared to Iext (using the result in [4])

to test the possibility of receptor–ligand binding fluctuations

dominating the total noise.
2. Results and discussion
First, we use the result in Fuller et al. ([4]; electronic sup-

plementary material, equation S56) for the external mutual
information Iext for shallow linear gradients

IextðQgrad;QrecÞ ¼
N

4 ln 2 cðxÞ
rc

1þ cðxÞ

� �2

; ð2:1Þ

where c(x) is the concentration measured in units of Kd,rc is the

gradient measured in units of Kd R21 (R is the radius of a hemi-

spherical cell, taken as 5 mm) and the dimensionless small

parameter e ; rc=ð1þ cÞ � 1. For larger values of e, one has

to resort to numerical simulations. The design of our microflui-

dic device ensured it was applicable to use the equation (2.1) as

the small parameter was in range 0:0003 � e � 0:0065.

Previously, Wurster & Butz [16] and de Wit & van Haastert

[17] measured the dissociation constants Kd and receptor num-

bers N using radioligand assays. Following Wurster & Butz

[16], we used the measured N and Kd after 3 h in the buffer,

which reflects the conditions in our experiments. As will be dis-

cussed below, following De Wit & van Haastert [17], we later

considered multiple receptor types for which the only infor-

mation available was for vegetative cells. Wurster & Butz [16]

found Kd ¼ 150 nM, N ¼ 60 000 and de Wit & van Haastert

[17] found five receptor types with the following dissociation

constants and receptor numbers: (i) Kd1
¼ 450 nM, N1 ¼ 80

000, (ii) Kd2
¼ 70 nM, N2 ¼ 80 000, (iii) Kd3

¼ 17 nM,

N3 ¼ 550, (iv) Kd4
¼ 50 nM, N4 ¼ 50 and (v) Kd5

¼ 15 nM,

N5 ¼ 1450. In both cases, Scatchard plots show that the first-

order kinetics can be used with good approximation but that

there is slight curvature implying either negative cooperativity

or greater receptor heterogeneity. Furthermore, the binding

curves for FA were measured for up to micromolar concen-

trations, the interesting range explored in this study.

Second, we measured the cell trajectories and the distri-

bution of angles p(uresjugrad) of total displacement vectors

(figure 1a) of a population of Dictyostelium cells (see the elec-

tronic supplementary material for Methods). In each

experiment, the FA gradient was uniform and the concen-

tration varied at most three-fold across the width of a

channel. Each experiment was repeated until we obtained

300–700 cell trajectories. These observations were used to cal-

culate the total mutual information Itot and the chemotactic

index (CI). CI is defined as CI ¼
P

i
ri

� �
� n̂=

P
i
jrij, where ri

http://rsif.royalsocietypublishing.org/


106 104 102108

10
–1

0
10

–1
2

10
–1

4
10

–1
6

10
–2

10
–4

10
–6

10
–8

I ex
t
=1bi

t

10
–1

610
–1

4

10
2

10
4

106108

10
–1

2
10

–1
0

10
–8

10
–6

10
–4

10
–2

 1
 b

it

CI
0.00
0.10
0.20
0.30
0.40

0.50
0.60
0.70
0.80
0.90
1.00

Kd=30nM
R = 5mm

Varnum & Soll [5]
(static gradient)

Song et al. [3]
(flowing gradient)

Van Haastert & Postma 
[7] (pipette assays)

Fisher et al. [6]
(static gradient)

Amselem et al. [8]
(flowing gradient)

Fuller et al. [4]
(flowing gradient)

1 10 102 103

10–3 110–1

10–110–2

102 103 104 105

104
m

ut
ua

l i
nf

or
m

at
io

n 
(b

its
)

m
ut

ua
l i

nf
or

m
at

io
n 

(b
its

)

0

0.05

0.10

0.15

0.20

10

Iext
Itot
control

1

mean concentration c0 (nM)

0

0.05

0.10

0.15

0.20

500 5000 50 000

0

0.05

0.10

0.15

2500 7500

0

0.05

0.10

0

0.05

0.10

5000 15000 50000

0

0.01

0.02

0.03

0.04

0.3 3.2 32.10.3 3.2

gradient increases concentration increases

(a)

(c) (d)

(b) (i) (ii)

Iext

Itot

1

1 10
mean concentration c0 (nM)

10–1 102 103 1041 10
mean concentration c0 (nM)

folic acid cAMP

10–4

10–3

10–2

101

102

10–1

1

10–4

10–3

10–1

10

10

1

gradient dc/dx (nM µm–1)

dc/dx =0.3 nM µm–1

dc/dx (nM µm–1) dc/dx (nM µm–1)

dc/dx =1.6 nM µm–1

gradient dc/dx (nM µm–1) gradient dc/dx (nM µm–1)

dc/dx =3.2 nM µm–1 c0=5000 nM

c0 (nM) c0 (nM) c0 (nM)

c0=50 000 nM

Figure 2. Comparison of the total mutual information Itot and external mutual information Iext. (a) Itot (dashed line) and Iext (solid line) for the same experiments as
in figure 1a, both averaged over all local concentrations (see the electronic supplementary material). Error bars for Itot represent s.e.m. The shaded range for Iext

denotes its spread owing to the range of local concentrations the cells were exposed to in the microfluidic device (see text). Dotted line denotes the Itot for control
experiments without a gradient. Annotation 1 shows the range where the data processing inequality is strongly violated, Itot . Iext. (b) (i) Calculated values for Iext

(equation (2.1)); shaded area denotes the combinations of c0 and dc/dx inaccessible in our experiment owing to the geometry of the microfluidic device and low
solubility of FA in development buffer (approx. 0.1 mM). (ii) the range of concentrations and gradients where cAMP chemotaxis has been measured, coloured by the
value of measured CI. The measurement with annotation 1 (c0 ¼ 500 nM ¼ 17 Kd, dc/dx ¼ 0.5 nM mm21 ¼ 0.08 Kd R21, CI ¼ 0.25) is done in the approxi-
mate range where we detected the greatest violation of the data processing inequality (c0 ¼ 5000 nM ¼ 33 Kd, dc/dx ¼ 3.2 nM mm21 ¼ 0.11 Kd/R, CI ¼ 0.13,
Itot ¼ 0.16 bits) if we compare them by rescaling the concentrations with their respective Kds (Kd(cAMP) ¼ 30 nM, Kd(FA) ¼ 150 nM [16,18]). Itot and Iext for
experiments with fixed gradient, where mean concentration changed is shown in (c) and experiments with fixed mean concentration where the gradient is changed
are shown in (d ). In the range investigated here, increasing the concentration and reducing the gradient reduced the chemotaxis response, Itot but the violation of
the data processing inequality persists. (Online version in colour.)
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the instantaneous cell displacement during the time step i
(taken as 30 s) and n̂ is the gradient direction.

We performed 10 experiments where we varied the FA con-

centration in the top channel of a microfluidic device while

keeping the bottom channel at concentration zero. In these exper-

iments, both the concentration and the gradient were changed

and these are plotted in figure 2a. We also performed five

additional experiments (shown in figure 2c,d) wherewe changed

the mean concentration and the gradient separately. For the

range of concentrations and gradients explored here, decreas-

ing the gradient and increasing FA concentration diminished

the signal. Therefore, the FA chemotaxis can depend both

on the absolute value of FA concentration and its gradient.

Itot was calculated by segmenting the real interval 0 �
ures , 2p into m bins of equal width. The bin size was m ¼ 14

for all experiments, because Itot with that bin size correlated

extremely well with CI (compare figures 1b and 2a) for which

no binning was used (see the electronic supplementary

material for further analysis). The fraction of total displacement

angles nj ending up in the bin ures,j � u , ures,jþ1 was counted

and Itot was computed [14, pp. 247–248] as

ItotðQgrad;QresÞ ¼
Xm

j¼1

nj log nj þ log m; ð2:2Þ

with the error due to a finite number of data points estimated as

(m – 1)/2M [19], where M is the total number of data points.

Next, we compared Itot and Iext. Figure 2a shows that for

low concentrations and shallow gradients Itot � Iext, meaning
the receptor–ligand binding fluctuations dominate the total

noise. This possibility was previously suggested for cAMP

[7,11] using signal-to-noise ratio analysis with a biased

random walk model of cell motion. The information-theoretic

analysis assumes only the steady-state receptor–ligand bind-

ing fluctuations and benefits from not being tied to a

particular model of cell motion, because Dictyostelium cells

do not follow a simple random walk [20].

The most surprising result is that the response is

observed for gradients as low as 0.2% across the cell body

(dc/dx ¼ 3.2 nMmm21, c0 ¼ 15 000 nM, Itot ¼ 0.06 bits shown

in figure 2b). For these experiments, the difference in the fraction

of occupied receptors front-to-back on the cell body is given by

h ¼ cfront

cfront þ Kd
� cback

cback þ Kd
ð2:3Þ

and is shown in table 1 for different measured dissociation

constants. This fraction is at most 0.006% which amounts to

a 1–10 receptors difference with 29 700 receptors (or 99%)

occupied on each side, indicating a highly saturated regime.

Furthermore, in this range, the data processing inequality

(Itot � Iext) is strongly violated as we have Itot . Iext, with

high certainty. The observed response is better than theoreti-

cally possible with receptor–ligand binding fluctuations as

the only noise source. Next, we compared our results with pre-

vious cAMP chemotaxis experiments [3–8], shown in figure 2b.

In comparing critical parameters, the receptor–ligand binding

constant Kd(FA) ¼ 150 nM stands out as a factor of five greater

http://rsif.royalsocietypublishing.org/


Table 1. Fraction of occupied receptors front to back of the cell for the shallowest gradient where we measured the chemotaxis response, calculated using each
measured receptor type according to equation (2.3).
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compared with cAMP, Kd(cAMP) ¼ 30 nM, whereas the

number of receptors per cell is almost the same: 60 000 for FA

and 70 000 for cAMP [16,18].

These simplified descriptions of FA and cAMP receptors

were sufficient to explain the results in Fuller et al. [4], but

do not suffice here—possibly explained by the limited range

of cAMP concentrations and gradients investigated in [4]

(figure 2b). The measurement with annotation 1 on fig. 2b

from Varnum & Soll [5] supports this possibility. They

measured CI ¼ 0.25 for cAMP, compared to our CI ¼ 0.13 for

FA, for roughly the same mean concentration c0 and gradient

dc/dx. Therefore, the cAMP response in that range might

also result in the violation of the data processing inequality.

Motivated by the failure of the theory, we investigated five

different modifications of the original model.

2.1. Effects of folic acid deaminase
First, we considered reduced FA concentrations perceived by

cells as a result of FA deaminase activity, a protein that

degrades FA [21]. We concluded, using both calculation and

a series of control experiments (see the electronic supplemen-

tary material), that it does not significantly contribute to the

observed result.

2.2. Effects of multiple receptor types and
receptor phosphorylation

Second, we considered all different receptor types mentioned

previously. This possibility was motivated by the local mini-

mum in Itot shown in figure 2a indicating that perhaps there are

two receptor types or states, each active in a distinct range of

local ligand concentrations. We calculated Iext for each receptor

type and added them together to investigate whether this

resolves the violation of the data processing inequality. The

results are shown in figure 3a and indicate that the presence

of multiple receptor types reduces but does not eliminate the

violation of the data processing inequality. This is because
the shaded range for Iext in figure 3 represents the range of con-

centrations the cells were exposed to in our microfluidic device

(and not the uncertainty), with the maximum value of Iext cor-

responding to the bottom of our device and the minimum value

corresponding to the top of our device. However, the systematic

uncertainty of the average Iext (solid line in figure 3a) is only 10%

(see the electronic supplementary material), which is what is

compared to the average Itot (we appreciate the comments of

anonymous referees and Eric Siggia on this matter.) Further-

more, the double-peak feature observed in Itot is not exactly

reproduced in Iext even when considering only two receptor

types. This could be owing to the fact that Iext is only an

upper limit for Itot, and in this range, the intracellular signal

processing is not negligible, so Itot�Iext. In other words, the

dip could be the consequence of the extra noise somewhere

downstream of the receptor–ligand binding events. It is also

worth mentioning that this double-peak response prevents us

from using any single receptor with fixed Kd to fix the violation

of the data processing inequality, unless the receptor number

per cell N is set to a factor 12 more than it is measured.

Therefore, this explanation could be plausible only if all

the cells were concentrated near the bottom of our device.

In our experiments, they were always uniformly distributed

with the mean position in the centre.

Third, we hypothesized that FA receptors can be

phosphorylated. Xiao et al. [22] have shown that the phos-

phorylation of cAMP receptors cAR1 reduced the affinity

(increased Kd) of a cAMP–cAR1 process by a factor of three,

from 300 to 900 nM. Here, we assume that the additional recep-

tor types can be phosphorylated to 3 � Kd and fit the data in

the same way as for additional receptor types. The results

(figure 3b) show that this only reduced the violation of the

data processing inequality, but did not eliminate it.

2.3. Effects of cell polarization
Fourth, we considered for the possibility of cell polarization

(we thank an anonymous referee for this suggestion),

http://rsif.royalsocietypublishing.org/
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previously considered in Andrews & Iglesias [13] and Hu

et al. [23]. In our analysis thus far, we assumed that cells

had no previous knowledge of the gradient direction, so

the prior probability was p(ugrad) ¼ 1/2p. Now, we consider

a circular normal prior distribution

pðugradÞ ¼
expðK cos ugradÞ

2pI0ðKÞ
; ð2:4Þ

where I0(K) is the modified Bessel function of the first kind of

zeroth order, and the parameter K measures the bias strength.

We used the approach from Hu et al. [23] to numerically cal-

culate Iext
bias(K ). We also numerically calculated Itot

bias(K )

(see the electronic supplementary material) and then com-

pared both Itot
bias and Iext

bias up to very biased distributions

with K ¼ 80, as larger values required significantly higher

numerical precision. Figure 3c shows that the violation of

the data processing inequality still persists.
20130606
2.4. Effects of multiple measurements
Finally, we investigated the effect of multiple independent

measurements of the receptor occupancy [7,11], occurring if

cells can choose between (i) short and imprecise gradient

measurements but moving fast, and (ii) long and precise gra-

dient measurements but moving more slowly. This is known

as the trade-off between exploration and exploitation in the

field of reinforcement learning [24].

Equation (2.1) is only valid for a single snapshot measure-

ment. The information acquired from multiple independent

measurements is simply the sum of the information of each

contribution owing to a single measurement. Therefore, we

multiply the equation (2.1) by the number of independent

measurements Nmeas ¼ Tpseudo/Tcorrel [4,23], where Tpseudo

is the time scale of pseudopod extension and Tcorrel is the

receptor correlation time (this ratio gives us the maximum

number of measurements that could have been performed).

We note that Tpseudo is likely the upper bound for the inte-

gration time based on the evidence in variable gradient

experiments [25] where it was observed that the cells

extend their pseudopods in the gradient direction as soon

as the direction of the gradient is changed. Rappel &

Levine [26,27] previously noted that the correlation time

depends on both receptor chemical dynamics and the diffu-

sive process. They estimated the cAMP receptor correlation

time Tcorrel ¼ 5 s. Fuller et al. [4] concluded NcAMP
meas � 1.

Accordingly, we estimated NFA
meas by assuming that Tpseudo

is inversely proportional to the mean cell speed, and the

same Tcorrel for both FA and cAMP receptors (based on com-

parable receptor off-rates for FA and cAMP receptors [17,28])

NFA
meas ¼

TFA
pseudo

Tcorrel
� NcAMP

meas

vcAMP

vFA
; ð5Þ

where the chemotaxis speeds are vcAMP¼ 0.25 mm s21 [4] and

0.05 mm s21� vFA � 0.12 mm s21, which gives 2� NFA
meas� 4.

Itot and Iext are compared in figure 3d and show that this only

reduced the violation of the data processing inequality, but

again does not eliminate it. Recently developed approaches con-

sidered diffusible inhibitors in balanced inactivation model

[26,27,29] and their integration time (Tint¼ 10 s) corresponds

roughly to the integration times estimated here (Tint¼ 10–20 s).

In addition, the models considered so far do not reproduce the

double peak observed experimentally (figure 3), but this might
be the consequence of a significant information loss downstream

of the receptor–ligand binding events.

However, combining the effects of additional receptor

types and multiple independent measurements does not

result in the violation of the data processing inequality

(figure 3e). NFA
meas roughly agrees with [7] NcAMP

meas � 2,

which was included to explain a much greater range of

concentrations and gradients than in [4] (figure 2b).

It should still be noted that the multiple independent

measurements can be a consequence of integrating the infor-

mation from multiple pseudopods (we thank an anonymous

referee for this suggestion). During the 30 s time interval,

cells extend a number of small protrusions (sometimes simul-

taneously), some of which are retracted quickly (see fig. 6 in

[30]). Taking this into account would lead to a different defi-

nition of the total mutual information than that used here

where the centroid of each cell is used to specify its position.

One direction for future studies is then to perform experiments

with higher resolution to quantify the information acquired

about the gradient using this alternative measure.

2.5. Other effects
Figure 3e implies that the total noise is indeed dominated by

the receptor–ligand binding fluctuations at both low and high

gradients and concentrations. This seems plausible because in

that range, the receptors are either mostly unoccupied or occu-

pied. In the intermediate range where Iext � Itot, the internal

noise dominates. We note that it has been shown [31] that there

is always a fraction of cell population which does not respond

to gradients and polarizes in random directions, independent

of the external cAMP gradient. Since in our experiments we

only have static gradients, we could not separately identify

these cells and they had to be included in the data analysis. Exclu-

sion of this subpopulation from our analysis would increase the

total mutual information Itot even further and the violation of the

data processing inequality would be even larger.

The possibility of receptor interactions was ruled out

owing to uniform receptor distributions for both FA [32]

and cAMP receptors [33,34]. Unlike in the cAMP case [4],

here the non-circularity of cell shapes is not an issue because

the cells are circular when sensing FA. However, there is still

a possibility of a more complicated mechanism if FA recep-

tors also transport FA into the cell [9], serving as a different

communication channel, or if a FA transporter is a separate

protein, as a separate communication channel.

The possibility that FA and cAMP receptors share the

majority of the internal signalling pathway [35] implies equal

FA and cAMP responses, if rescaled by their respective par-

ameters Kd and N. This remains to be investigated with more

cAMP and FA chemotaxis measurements in the same concen-

tration and gradient range. The results here and in [4,11]

confirmed that the external noise dominates for both chemo-

attractants in low concentration range. This is in contrast to

the conclusion reached in the Supplementary Information of

Samadani & Mettetal [31], SI possibly caused by using

single-pulse temporal gradients, as opposed to defined static

gradients used here and in [4].
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METHODS

Information measures

Shannon’s information theory frees the data analysis from
being tied to any particular model (as an example of success-
ful applications see e.g. [1] and [2]) – and in this case, from
any particular details of signal transduction pathways, but
still provides quantifiable relationships between inputs and
outputs. The relevant quantities in information theory are
defined as follows [3]. The information entropy of a ran-
dom variable X, is measured in bits defined as H(X) =
−
∫
p(x) log2 p(x)dx (a definite integral defined over the en-

tire range whereX is defined). It is a measure of “sharpness”
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FIG. 1. The current paradigm for eukaryotic chemotaxis and
the model assumptions. (a) Bacteria secrete folic acid (FA),
which then binds to Dictyostelium FA receptors. Dictyostelium
measures spatial distribution of occupied folic acid receptors and
these binding events trigger a cascade of intracellular events even-
tually leading to cell movement. (b) Markov chain model assump-
tion used in our work: the receptor occupancy θrec depends on
the gradient θgrad, and the cell response θres conditionally de-
pends on the gradient. (c) The external (Iext) and total mutual
information (Itot) compared in this work. As detailed in Methods,
Iext measures the information gained about the gradient, given
the calculated spatial distribution of bound receptors, while Itot

measures the information gained given the distribution of cell re-
sponses. Assuming the Markov chain relationship in part b), the
data processing inequality states Itot ≤ Iext.

of probability distribution p(x); a perfectly sharp probability
distribution has entropy zero, whereas a perfectly flat, uni-
form distribution gives the highest possible value for entropy
H(X). An alternative interpretation of information entropy
is the number of bits or the amount of information required
to describe the random variable X. Sharp probability distri-
butions require fewer bits for their full description than flat
probability distributions. Intuitively, for the former only a
few values near the peak can be sufficient to describe most
of the outcomes of X, while for the latter we need more in-
formation to achieve the same. For conditional probability
distributions, the conditional entropy is measured in bits de-
fined as H(X|Y ) = −

∫
dyp(y)

∫
dxp(x|y) log2 p(x|y). This

measures how sharp p(x|y) is, when averaged over all possi-
ble values of y. For some values y, p(x|y) may be sharp, for
some other values of y, p(x|y) may not be so sharp, and the
conditional entropy tells us on average what is the sharp-
ness, when averaged over all possible y. The average gain in
information about x, given y, is the difference between the
two, called mutual information I(X,Y ) = H(X)−H(X|Y ).
This measure describes the increase in knowledge about X
after we have been given some value y, and then averaged
over all possible y. In other words, I(X,Y ) describes how
much on average p(x|y) is sharper, when compared to p(x).
The sharper the probability distribution becomes, the more
information we have acquired about a random variable X.

Application to gradient sensing

In this case, the sensing process essential to eukaryotic
chemotaxis is depicted in Fig. 1a. Here we consider three
random but conditionally dependent variables, the gradient
direction θgrad, the receptor occupancy θrec and the cell re-
sponse directions θres. These variables are assumed to form
a Markov chain (see Fig.1b), where the cell response is condi-
tionally dependent on the distribution of occupied receptors;
i.e. given the distribution of occupied receptors, the cell re-
sponse is completely independent of the original direction of
the gradient that caused this particular receptor occupancy.
Due to noise, the same receptor occupancy distribution can
occur for gradients pointing in different directions. Without
any prior knowledge we assume the gradient is equally likely
to be pointing in any direction. We will see how much infor-
mation we can obtain about the gradient by either observing
the cell response and by calculating the distribution of recep-
tor occupancy, and then comparing the two gains. The mu-
tual information Itot(θgrad, θres) = H(θgrad)−H(θgrad|θres)
quantifies the total amount of information cells gained about
the gradient (or by how much the entropy of θgrad is re-
duced); this is determined by observing their response (see
Fig.1c). Therefore, Itot is the gain in information that in-
cludes all possible noise sources in the FA signal transduction
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pathway.
In addition, the (external) mutual information (see Fig.1c)

between the gradient direction and receptor occupancy
Iext(θgrad, θrec) = H(θgrad)−H(θgrad|θrec) tells us the infor-
mation gained about the gradient by knowing the distribu-
tion of receptors occupied with FA. Authors in [4] formulated
a theory for computing this quantity and gave an analyti-
cal result applicable for shallow gradients. The assumptions
behind this theory are: i) the steady state of the receptor-
ligand binding process, ii) the first part of the Markov chain
model shown in Fig.1b (receptor probability distribution is
affected only by the local gradient), iii) cells of perfectly cir-
cular shapes and iv) uniform receptor distribution. While we
have no direct way of confirming the plausible assumptions
i) and ii) when sensing FA, Dictyostelium do have circular
shapes and the distribution of FA receptors was previously
measured as uniform [5]. This theory gives predictions for
the external mutual information Iext using only two bio-
chemical constants – the dissociation constant Kd between
FA and its receptor and the total receptor number per cell,
N . Both have been measured previously and multiple re-
ceptor types/states have been discovered as is also the case
for cAMP receptors (see main text for discussion). The dis-
sociation constant and the total receptor number per cell,
as well as the experimentally fixed FA concentration and its
gradient in our devices are sufficient to predict the external
mutual information Iext. Iext provides the upper limit for
the amount of information that can be acquired (Itot), due
to the data processing inequality: Itot ≤ Iext [7]. In other
words, any kind of data processing can only destroy infor-
mation. If the two quantities are roughly similar Itot ≈ Iext,
then the gain in information about θgrad is about the same
for both cases and the majority of the noise in the entire
process comes from receptor-ligand binding events.

Cell growth and preparation

Cells of the well characterized axenic strain, AX4 (pro-
vided by Dictyostelium Stock Center, Northwestern Uni-
versity), were grown in shaken culture suspension at 150
RPM in Formedium HL5 (Formedium, Hunstanton, UK)
with glucose culture medium up to the concentration of
about 0.5 − 3 × 106 cells. Development Buffer (DB; Dic-
tyBase recipe: 5 mM Na2HPO4, 5 mM KH2PO4, 1 mM
CaCl2, 2 mM MgCl2; pH 6.5) was chosen as the medium
for FA chemotaxis experiments because it is a well-defined
medium and is an approximation of a physiological envi-
ronment due to its low ionic strength [8]. A negative as-
pect of using DB is cell starvation and progression into de-
velopment after 6+ hours (depending on cell density) and
eventual loss of FA chemotactic sensitivity [9]. This was
circumvented by performing the experiment before the star-
vation response occurs, as indicated by cell morphology –
cells still had circular shapes. Since it was shown that the
HL5 medium already contains about 0.12 mg/l of FA [10]
(∼0.3 µM), the medium was diluted by factor >∼30,000×,
lowering the background FA concentration in the medium
to at most 0.01 nM. This corresponds to about 1 molecule
of FA per volume size of a Dictyostelium cell (100µm3). De-

pending on the cell concentration, 1-5 ml of cell suspension
was taken from the shaken culture and DB was added for
a total volume of 10 ml (dilution ≥2×). The cell suspen-
sion was then centrifuged for 40 seconds at 1000 RPM (200
g force), 9.8 ml of supernatant was removed, and 9.8 ml of
DB was added to again have the final volume of 10 ml (dilu-
tion 50×); this was repeated once more (another dilution of
50×). 9.8 ml of supernatant was removed again and finally,
0.2 ml of 1µm diameter colloidal particles at concentration
108 particles/ml (Polysciences, Inc.) in DB and 1-5 ml of DB
was added, depending on the starting cell concentration (di-
lution >∼6×). The colloidal particles allowed us to monitor
unintended convection that could ruin the static gradient.
The entire procedure took about 20-30 minutes after which
the cells were immediately loaded into the microfluidic de-
vice with an already established gradient.

Microfluidics device design

The microfluidic device was designed as an agarose gel
containing 3 channels [11]: the static middle channel and
two flowing side channels, that represent fixed boundary
conditions, were separated by a layer of agarose gel and
the gradient was formed by waiting for diffusion of FA to
reach a steady state (see Fig.2 andFig.3). Reservoirs were
connected via Teflon tubing and the steady flow was sup-
plied by a Harvard PHD 2000 syringe pump. The time
to reach the steady state was checked by running a 2D dif-
fusion simulation in COMSOL Multiphysics 3.5 (COMSOL,
www.comsol.com) and analyzing the gradient in the middle
of the channel (Fig.3). The microfluidic channel contain-
ing Dictyostelium cells, also contained 1µm-sized colloidal
particles. These were used to monitor the flow rate in the
static channel and the measured Peclet number Lv/D (di-
mensionless number characterizing the ratio of advective ver-
sus diffusive transport) was always below 0.3, where L is the
channel height (250 µm), D the diffusion constant of folic
acid 194 µm2/s [12] and v the measured average drift veloc-
ity of colloidal particles (0.04 to 0.23 µm/s). After loading
the cells, the gradient in the middle channel was temporar-
ily lost, however, the time-scale of diffusive refilling of that
channel from the bulk of the material above is estimated to
be only t ∼ L2/D ≈ 5 minutes, an insignificant duration.

Device preparation

The 3% agarose gel was formed as follows. 0.300g of
agarose was mixed with 10 ml of DB. The agarose mixture
was heated and kept near the boiling point in a microwave
oven for 40 seconds total. Agarose was molded by pouring
the heated mixture over an inverted PDMS master, which
was itself molded from an original Teflon master produced
by conventional milling. After about 2 minutes the agarose
solidified, the holes were punched and the chamber was se-
cured between a plexiglas manifold and a glass microscope
slide. In this experiment 3% agarose serves as an environ-
ment permeable to small molecules, such as water and folic
acid, but not permeable to Dictyostelium. Dictyostelium are
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centration in the left channel, cmax (a slice through the middle of
bottom figure). The bottom figure shows a concentration profile
intensity of FA at the time of recording, 5 hours after the gradi-
ent started forming. Note the steady state has not been formed
in the entire device, but only in the middle chamber.

migrating naturally attached on the glass surface, with 250
µm of static liquid (DB+FA gradient) on top and around
them. The agarose gel was sealed well enough that the cells
were unable to crawl underneath it.

Cell recording

For each run, at t=0 hours: the gradient formation was
started. At t=3 hours: the cells were loaded in the device.
Since we noticed that cells were not very mobile when first
introduced into the device, we allowed them to adjust to the
new environment for about 3.3 hours to establish a good de-
gree of mobility. At t=6.3 hours recording started. At t=9.3
hours: the recording stopped. This time was chosen based
on the fact that this is the time when one would first observe
morphological changes associated with cell-to-cell cAMP sig-
naling during the starvation response (e.g. elongated cells
and formation of streams) when the cell density was signifi-
cantly (10x) higher. Cell motion was recorded using bright
field time-lapse optical microscopy, using an Olympus IX71
inverted microscope and a Home Science Tools MI-DC5000
5.0 Megapixel camera. Snapshots were taken every 30 sec-
onds and cell trajectories were later analyzed on a computer.
The list of concentrations used in both channels is shown in
Table I.

combination dc/dx (nM/µm) c0 (nM) chigh (nM) clow (nM)
1 3.20 × 101 5.0 × 104 1.00 × 105 0
2 6.4 × 100 1.0 × 104 2.00 × 104 0
3 3.2 × 100 5.0 × 103 1.00 × 104 0
4 1.6 × 100 2.5 × 103 5.00 × 103 0
5 6.4 × 10−1 1.0 × 103 2.00 × 103 0
6 3.2 × 10−1 5.0 × 102 1.00 × 103 0
7 1.6 × 10−1 2.5 × 102 5.00 × 102 0
8 3.2 × 10−2 5.0 × 101 1.00 × 102 0
9 3.2 × 10−3 5.0 × 100 1.00 × 101 0
10 3.2 × 10−4 5.0 × 10−1 1.00 × 100 0
11 0 0 0 0
12 0 2.5 × 103 2.50 × 103 2.50 × 103

13 0 1.0 × 104 1.00 × 104 1.00 × 104

14 3.2 × 10−1 5.0 × 103 5.50 × 103 4.50 × 103

15 1.6 × 100 7.5 × 103 1.00 × 104 5.00 × 103

16 3.2 × 100 1.5 × 104 2.00 × 104 1.00 × 104

17 3.2 × 100 5.0 × 104 5.50 × 104 4.50 × 104

18 3.2 × 10−1 5.0 × 104 5.05 × 104 4.95 × 104

TABLE I. List of experimentally used concentrations in the two
channels of a microfluidic device, chigh and clow with calculated
gradient dc/dx and the mean concentration c0.

Analysis of cell trajectories

We used ImageJ (http://imagej.nih.gov/ij/) with Par-
ticleTracker Plugin [13] for automated cell detection and
tracking. Particle tracks were analyzed in a custom-made
MATLAB (The MathWorks, Natick, MA) code, where the
following filtering was applied: the cells that could not be
tracked consistently for more than 6 minutes (3% of the to-
tal recording time) were discarded and points on the screen
that did not move at all were discarded as well; the latter
corresponding to dead cells or other artifacts on the glass
surface or CCD. Each experimental run was repeated 3 to
11 times, until about 300 to 700 cell trajectories were gath-
ered. A sample of such trajectories is shown in Fig.4. The
distribution of trajectories was very broad with lengths of
260± 220µm. Depending on the gradient, component of the
velocity in gradient direction ranges from −0.15 µm/min to
0.51 µm/min.

Analysis of different trajectory time lengths

Here we experimentally check for the possibility that cells
can integrate multiple gradient measurements over time
scales longer than the pseudopod extension time (∼ 30 s).
We calculated the chemotactic index (CI) as we progressively
moved the end point of the cell trajectory from the one at
frame 2 (30 seconds) to the one at frame 400 (3.3 hours).

The 30 second time interval between subsequent frames
was chosen since the cell displacements were typically about
3 µm, which was at the limit for measuring displacements
in our experiments.

If the cells were indeed integrating over more measure-
ments as the time moved on, we would expect to see the CI
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FIG. 4. Typical cell trajectories obtained from an experiment
with c0 = 33Kd and dc/dx = 0.11Kd/R (Kd = 150 nM). Differ-
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FIG. 5. Average and the standard deviation of cell speeds for
the experiments given in Fig.1b in the main text. Kd = 150 nM,
R = 5µm.

increase with time. The results for our peak experiments
with the mean concentration of 2.5 µM and the gradient of
1.6 nM/µm are shown in Fig.7. Here we see that CI actually
slightly decreases after ∼ 300 s, but overall does not change
significantly.

AVERAGING THE EXTERNAL MUTUAL
INFORMATION

External mutual information Iext was averaged over the
entire channel in the gradient direction, weighted by the
fraction of cells in each spatial segment:

〈Iext〉 =
M∑

i=1
piIext,i (1)

where pi is the fraction of cells in a segment i of the mi-
crofluidic device (a sample of such distribution is shown in
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FIG. 6. Histogram showing the distribution of chemotactic index
for our peak experiments with the mean concentration of 2.5 µM
and the gradient of 1.6 nM/µm.
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FIG. 7. Chemotactic index (CI) as a function of the trajectory
time length (or the maximum allowed integration time) for a sin-
gle representative experimental run with the mean concentration
of 2.5 µM and the gradient of 1.6 nM/µm.

Fig.8) and Iext,i = Iext(〈c(xi)〉) is the external mutual infor-
mation for the average concentration in segment i. If Iext is
averaged assuming a perfectly uniform cell distribution:

〈Iext〉 = 1
cmax − cmin

∫ cmax

cmin

Iext(c0)dc0 (2)

the analytical result is:

〈Iext〉 = N

4 ln 2 (cmax − cmin)×{
1

1 + cmax
− 1

1 + cmin
− ln

[
(1 + cmin)cmax

cmin(1 + cmax)

]}
which agrees to our estimate of 〈Iext〉 to about 10% for our
experiments.

EFFECTS OF FOLIC ACID DEGRADATION

Here we explore the possibility that most of the FA is de-
graded by cells themselves, and they were effectively sensing
a lower FA concentration, closer to Kd. FA can be degraded
by an extracellular form of FA deaminase protein and we
estimate the extent to which the FA concentration can be
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ordinate in the gradient direction, shown for the experimen-
tal run that gave the peak response with c0 = 2500 nM and
dc/dx = 1.6 nM/µm for M = 15 segments.

reduced by this process. Following up on the previous study
of the level of deaminase secretion under the same condi-
tions [14], we estimated the deaminase activity (defined as
the amount of FA degraded per cell per unit time) for our
system. The reported mean value for the deaminase activity
from [14] is 35 pmol per 106 cells per minute. Assuming a
steady-state flat concentration profile of deaminase in our
experiment of total volume of 0.15 ml, about 50 cells in
total and about 5 hours the cells spent in the chamber (cor-
responding to the middle of our run), the amount of FA that
could possibly be degraded by that time is 5.25×10−13 mol.
On the other hand, the total amount of FA in this entire
volume, at 2.5µM mean concentration is 3.75 × 10−10 mol,
so the degradation by FA deaminase could account for less
than 0.1% of the expected amount of FA. This calculation is
summarized in the Table II. This conclusion was verified ex-
perimentally by changing the cell density by a factor of four
(from 7 cells/mm2 to 30 cells/mm2) for the gradient where
we observed peak response and noticing that the same re-
sult in terms of chemotactic index (0.10 ± 0.02 at lower vs
0.09± 0.01 at higher density) and total mutual information
(0.14± 0.02 bits vs 0.14± 0.01 bits) was observed. Thus, we
conclude that degradation of FA by FA deaminase cannot
account for the violation of the data processing inequality.

EFFECTS OF CELL POLARIZATION / BIAS

The total mutual information with bias is defined by:

Ibias
tot = Hbias(θres)−Hbias(θres|θgrad) (3)

with

Hbias(θres) = −
∫
p(θres;K) log2 p(θres;K)dθres (4)

quantity value units
activity 35 × 10−6 pmol/(cell min)
total volume 0.15 ml
time 300 min
cell number 50
FA amount 3.75 × 10−10 mol
FA amount degraded 5.25 × 10−13 mol
FA percentage degraded 0.07 %

TABLE II. Summary of the calculation for FA deaminase contri-
bution to the observed results for the case of our best response
at 2.5µM mean concentration.

Hbias(θres|θgrad) =

−
∫∫

p(θres|θgrad)p(θgrad) log2 p(θres|θgrad)dθgraddθres

where the marginal probability of a response at an angle θres

is:

p(θres;K) =
∫
p(θres|θgrad)p(θgrad)dθgrad (5)

which is calculated using the experimentally measured val-
ues for the distribution of the response given the gradient,
p(θres|θgrad) = p(θres − θgrad). Since the measured val-
ues were discrete, we originally approximated the integral
in Eq.2 (in the main text) with a discrete sum. However,
here we calculated a more complicated integral and instead
approximated a discrete distribution p(θres|θgrad) with a
continuous distribution using kernel density estimation [15].
Since this is a different method of estimating the total mu-
tual information from the data, we first compared the results
for non-biased total mutual information (corresponding to
the case K = 0) obtained using these two methods in Fig.9
and show they are very similar. We therefore used the kernel
density estimation to compute the biased total mutual infor-
mation, for various values of the biasing parameter K > 0.

Next, we numerically calculated the biased external mu-
tual information Ibias

ext using the Eq.13 in [16]:

Ibias
ext = Iext −B(K) (6)

where the term B(K) depends on the bias (see [16] for de-
tails).

Ibias
ext = Iext −

∫
p(ρ)h(ρ;Kp)dρ (7)

with:

Iext = 1
ln 2

(ν
σ

)2
−
∫
p(ρ) log2 I0

(ρν
σ2

)
dρ (8)

p(ρ; ν, σ) = ρ

σ2 exp
[
−ρ

2 + ν2

2σ2

]
I0

[ρν
σ2

]
(9)

ν(N, c0,∇c) = N

2
∇c

c0 + 1 (10)
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FIG. 9. Comparison of two methods for calculating Itot: first
binning the data and approximating the integral for Itot with
a sum and the second, approximating the discrete data with a
continuous function obtained by kernel density estimation [15],
showing that both methods give very similar results. Here we
used Kd = 150 nM and R = 5µm.

σ(N, c0) =

√
N

2
c0

(c0 + 1)2 (11)

h(ρ;Kp) = 1
ln 2

[
K
I1(Kp)
I0(Kp) − ln I0

(ρν
σ2

)]
(12)

Kp = Kνρ

Kσ2 + νρ
(13)

where c0 is the local chemoattractant concentration in units
of Kd, ∇c the gradient in units of Kd/R, N the total num-
ber of receptors, K the same biasing parameter and I0(Kp),
I1(Kp) are the modified Bessel functions of the first kind of
order zero and one, respectively. We computed both the to-
tal and external mutual information for different magnitudes
of the bias, up to very sharp polarizations K = 80 (larger
values require significantly higher numerical precision) and
show the results in Fig.3c in the main text. These results
show that the inclusion of this effect still results in the vi-
olation of the data processing inequality, and moreover, for
a wide range of bias parameters, the violation is further in-
creased.

EFFECTS OF BINNING

The total mutual information calculated using Eq.3 (main
text) depends on the choice of number of bins m.
While there is no “best” number of bins, here the total

number of bins chosen was 14 which gave similar results
for all combinations of gradients and mean concentrations
since we had roughly the same number of cells in each case
(typically around 500). First, as stated in the main text,
it correlates well with the CI (comparing Fig.1b and 2a in
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FIG. 10. The dependence of the total mutual information Itot

on the number of bins for the experiment with c0 = 2.5 µM and
dc/dx = 1.6 nM/µm. Shaded area shows the error in estimating
Itot according to the ref.[18] in the main text.

the main text). Second, Itot reaches a plateau in this bin
range and becomes lower when we use too few bins (below
≈ 10) or higher but with much larger uncertainty if we use
too many bins (roughly 30 or more); see Fig.10. The plateau
corresponds to the middle ground here where Itot does not
change much if the bin number changes a little around the
chosen value. Finally, this choice of 14 bins gave approx-
imately the same results as the Kernel Density Estimate
(Fig.9) used for data smoothing [15].
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