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Supplementary Information 

1. Insignificance of strain variety and inoculant source density for slow-fast transition variation  

  

 

 

 

 

 

Figure S1.   AX3 (a) and AX4 (b) axenic strain proliferation kinetics. Different symbols indicate 

different samples. Dashed line indicates the best alignment of exponential range data (from approximately 

1×104 to 5×106 cell/ml) to a single exponential growth law by time translation of each run. Time zero is 

arbitrary. Red points indicate samples prepared from the high exponential density sources: 4×106 to 8×106 

cells/ml for AX3 and 1.2×106 to 3×106 cells/ml for AX4. Blue symbols indicate the samples prepared from 

lower exponential density sources: 5×104 to 3×105 cells/ml for AX3 and 2×105 to 6×105 cells/ml for AX4. 

Counting uncertainty estimates given in Material and Methods Sec. 3. 

Comparing Figures. S1 a) and b) we see no noticeable difference in the transition variation between 

these two axenic strains.  

Brock and Gomer1 have reported a proliferation suppression factor at high densities in the log phase. 

We see from Figure S1 b that the variation in the growth behavior we find does not depend on the source 

density to an extent that would indicate the involvement of the Brock-Gomer suppressor factor. 

2. The search for a lagless strain  

       Previously,2 we discussed the possibility of obtaining a lagless D. discoideum strain after seeing such 

behavior. In searching for examples of this lagless strain, we examined lines derived from frozen samples 

of the original strain used in the earlier work as well as material provided by the Dicty Stock Center. In no 

cases could we establish a consistent lagless behavior through repeated culture passages.  

3. Ensuring culture consistency 

As a precaution to combat possible bacterial contaminations, we used syringe filtered PenStrep. For the 

observations plotted in Figures 1a and 1b we kept the room lights off in our culture room when it was not 

in use. We kept the lights on at all times, however, in later experiments in order to suppress any possible 

effects of lighting on cell growth (such as entrainment of circadian rhythms)3. Our clean table for cell culture 

was kept sterile by continuously running ultraviolet lights when not in use. Since the experiments presented 

here were performed over a few years, we accounted for the possible effects of extended culturing by using 

fresh cells from the Dicty Stock Center and newly thawed out cells from our frozen stock. The slow-to-fast 
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transition effect persisted, even after continually culturing the cells for a year. In no case have we noticed 

any systematic variation or any change in growth kinetics.  

4. Unimportance of rare bacterial contamination 

Next, we considered the possibility that a low-level bacterial infection might retard growth at low densities 

and that D. discoideum might combat this collectively, eventually winning out, thereby producing a lagging 

effect. We disregarded rare (about one in a hundred) results where an infection appeared in a sample and 

overtook a culture. Contaminations that would escape detection in this manner specifically concerned us. 

Rarely, we found very low levels of a strain of E. coli bacteria in our cultures. Through colony growth 

assays on agar plates, we established that this E. coli strain was resistant to the penicillin and streptomycin 

antibiotics we used for D. discoideum growth, but highly susceptible to tetracycline. We tested the effect 

of these occasional contaminations on cell growth and the lag phase duration by performing an experiment 

with the turbidity point setup (see Materials and Methods Sec 4) with small vials (volume 0.6 ml) dosed 

with antibiotics at variable strengths. For each dose, we prepared eight experimental samples, two control 

samples with no D. discoideum cells, and three samples at 104 cells/ml for exponential growth rate 

estimation. As shown in Fig. S2, these experiments revealed no significant difference in doubling times in 

the exponential growth phase up to the standard doses of tetracycline (to check for E. coli effects) doses or 

penicillin/streptomycin (our usual combination antibiotic). Similarly, there was no change in the lagtime 

for either antibiotic up to the standard dose. At the highest dose of tetracycline (four times the standard 

dose), the lag time was severely reduced with the application. We conclude that there was no sign of 

bacterial contamination, including E. coli, in our reported measurements.  

 

Figure S2. No sign of the effect of antibiotics up to standard doses on a) cell culture or b) the Allee 

effect. We conclude that bacterial contamination is unimportant  

As an additional contamination control, we spotted agar plates from 20 small volume (0.6ml) samples 

that had grown into the exponential growth phase. We observed no bacterial growth, although the plates 

showed ready sensitivity to E. coli as expected. Of these specimens, we selected the longest lagging sample 

for intensive microscopic inspection and found no traces of E. coli or any other contaminants.  Therefore, 

from all this evidence, we conclude that a low-level bacterial contamination does not cause the lagging 

behavior we observe. 



3 

 

5. Previous conditioned medium experiments 

Earlier,2 we performed 8 conditioned media experiments in large 30 ml volume samples, with initial 

cell densities between 2×103 and 7×103 cells/ml and growth medium prepared by mixing equal amounts of 

fresh and CM (obtained from the 106 cells/ml samples). Now, having more accurately determined the range 

in which the slow-to-fast growth transition occurs, we note that initial densities in the previous experiments 

were very close to the transition density 104 cells/ml, there were only 6 samples and the fast growth rate 

estimates had a relatively large uncertainty. We have since quantitatively established a large variation in 

growth kinetics (as reported in this work) and therefore decided to perform a much more extensive set of 

conditioned media measurements as reported in the main text. 

6. The unimportance of variation in the phase of the cell cycle. 

To evaluate the effect of variable positions in the cell cycle on variations in lagging, we performed a 

simulation which began by assuming 60 cells in a 0.6ml vial – matching the initial density of our turbidity 

point experiments. We allowed the cells to divide at a time-independent rate (following Poisson statistics) 

with the following important caveat: for each cell, we tracked the time since its last division and only 

allowed a division if that time exceeded 𝑇0, the minimum time interval needed to complete the cell cycle. 

We estimated 𝑇0 from two sources: culture recommendations4 explain that the fastest doubling time for log 

phase growth (when grown on bacteria) is 4 hours and measurements of the cell cycle of the AX2G strain5 

found a cell cycle time of approximately 12 hours. We took this as an upper limit for 𝑇0. Running the 

simulations repeatedly for these two extremes of 𝑇0 - 4 and 12 hours - we found standard deviations in the 

times it took to reach the log phase cell density of 1.5 and 1.9 hours, respectively. This is considerably 

shorter than the variations we noticed in Figure 1e. We conclude that cell cycle variation does not account 

for the observed diversity in lagging. 

7. Calculation of the variation in lag times due to sampling noise in the initial cell density 

In the main text (Fig. 1a) we showed that the cells are growing exponentially in the lag phase with a 

typical doubling time Tslow = 20 hours. Therefore, in the lag phase the cell number after time t is: 

𝑛(𝑡) = 𝑛02𝑡/𝑇𝑠𝑙𝑜𝑤 

The lag times were obtained by the method shown in Fig. 2d i.e., by matching the actual growth (which 

includes the lag phase) and pure exponential (log) growth started after 𝑡𝑙𝑎𝑔 at the crossover cell density 

𝑛(𝑡 = 𝑡𝑥) = 𝑛𝑥. The equations of both curves are (with Tfast having by a typical value of 11 hours) given 

by: 

𝑛𝑙𝑎𝑔(𝑡) = 𝑛02𝑡/𝑇𝑠𝑙𝑜𝑤 ,   𝑛𝑙𝑜𝑔(𝑡) = 𝑛02(𝑡−𝑡𝑙𝑎𝑔)/𝑇𝑓𝑎𝑠𝑡 

 

At the crossover from slow to fast growth we have 𝑛𝑙𝑎𝑔(𝑡𝑥) = 𝑛𝑙𝑜𝑔(𝑡𝑥):  

𝑛02𝑡𝑥/𝑇𝑠𝑙𝑜𝑤 = 𝑛02(𝑡𝑥−𝑡𝑙𝑎𝑔)/𝑇𝑓𝑎𝑠𝑡  
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𝑡𝑥 − 𝑡𝑙𝑎𝑔 =
𝑇𝑓𝑎𝑠𝑡

𝑇𝑠𝑙𝑜𝑤
𝑡𝑥 

𝑡𝑙𝑎𝑔 = 𝑡𝑥 (1 −
𝑇𝑓𝑎𝑠𝑡

𝑇𝑠𝑙𝑜𝑤
) = 𝑡𝑥 (

𝑇𝑠𝑙𝑜𝑤 − 𝑇𝑓𝑎𝑠𝑡

𝑇𝑠𝑙𝑜𝑤
) 

Now, we want to express 𝑡𝑥 as a function of the initial density 𝑛0: 

𝑡𝑥 = 𝑇𝑠𝑙𝑜𝑤 𝑙𝑛 (
𝑛𝑥

𝑛0
) /ln (2) 

and we have:  

 
𝑡𝑙𝑎𝑔 =

(𝑇𝑠𝑙𝑜𝑤 − 𝑇𝑓𝑎𝑠𝑡)

𝑙𝑛(2)
𝑙𝑛 (

𝑛𝑥

𝑛0
)   

 

Finally, if our uncertainty in the initial density for our small volume measurements was due to the root 

N Poissonian sampling noise of 𝜎𝑁0
= 8, (𝑁0 = 𝑛0𝑉 = 60 𝑐𝑒𝑙𝑙𝑠, where V is the volume) the uncertainty 

in the lag times is given by the error propagation formula:  

𝜎𝑡𝑙𝑎𝑔
= |

𝜕𝑡𝑙𝑎𝑔

𝜕𝑁0
| 𝜎𝑁0

=
(𝑇𝑠𝑙𝑜𝑤 − 𝑇𝑓𝑎𝑠𝑡)

𝑁0 𝑙𝑛 2 
𝜎𝑁0

= 1.7 ℎ𝑜𝑢𝑟𝑠 

 

The 2𝜎 interval covers a range of 3.4 hours. However, Fig. 1e shows that the observed variation was much 

greater (26 hours). For our 25 ml volume samples (Figures 1a and 1b), the spread should be negligible (0.3 

hours) because of the much greater sampling size (𝑁0 = 2500 ± 50 cells); however, as we have seen, a 

comparable range of observed lag time persists. Therefore, we conclude that the natural uncertainties in the 

inoculation densities cannot account for the observed range of variation in lag times.  

8. Statistical significance tests of conditioned media experiments 

Here we describe tests for the potential difference between the mean lagging time in conditioned media 

experiments. We start with a null hypothesis: the means of lagging times in each set of conditioned media 

experiments (taken from the same source; columns in Fig. 4) are the same. The means are compared using 

the Welch Two Sample t-test, as follows. First the test statistic 𝑡 is defined as the difference between the 

mean lagging times normalized by the variance of two samples:  

𝑡 =
𝑥1̅̅̅̅ −𝑥2̅̅̅̅

𝑆𝑥1−𝑥2

,    𝑆𝑥1−𝑥2
= √

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
   

where 𝑠1 and 𝑠2 are the standard deviations and  𝑥1̅̅ ̅   and  𝑥2̅̅ ̅   are the means of the samples 𝑥1 and 𝑥2. The 

distribution of the test statistic is then approximated as an ordinary Student’s t distribution with the degrees 

of freedom parameter calculated by the Welch-Satterthwaite equation:  
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𝑑𝑓 =
(

𝑠1
2

𝑛1
+

𝑠2
2

𝑛2
)

2

(
𝑠1

2

𝑛1
)

2

𝑛1 − 1
+

(
𝑠2

2

𝑛2
)

2

𝑛2 − 1

 

Then, we compared the lagging times obtained between pairs of experiments with different amounts of 

conditioned media by calculating the following p-value: the probability of obtaining a test statistic at least 

as extreme as the one observed, assuming that the null hypothesis is true. In other words, large p-values6 

imply that we cannot reject the null hypothesis. The comparison between the experiments with different 

amounts of conditioned media from Fig. 4 in the main text is given in Tables S1 and S2.  

Table S1. Conditioned media taken from cells below the transition, at 2000 cells/ml cell density. 

p-value 0.1% CM 5% CM 100% CM 

0% CM 0.45 0.72 0.36 

0.1% CM - 0.22 0.58 

5% CM - - 0.25 

 

Table S2. Conditioned media taken from cells above the transition at 3×105 cells/ml (30 samples for each 
experiment; left entries) and 5×105 cells/ml (13 samples for each experiment; right entries). 

p-value 0.1% CM 5% CM 100% CM 

0% CM 0.08  0.16 0.93 3×10-4 2.2×10-16  5×10-3 

0.1% CM - 0.17  7×10-3 1.8×10-7 0.02 

5% CM - - 6.2×10-5 0.16 

 

These tables show us first that the null hypothesis cannot be rejected if the conditioned media is taken 

from the cells below the transition and can be rejected if the conditioned media is taken from cells above 

the transition, when comparing the means of the lagging times between samples with 0% and 100% of 

conditioned media. The experiments performed with conditioned media taken from cells at 3×105 cells/ml 

had three times the number of samples, which is reflected by much smaller p-values in comparing 0% and 

100% conditioned media experiments.  

9. Estimation of chemical signal threshold and secretion rates per cell  

For chemical signal concentrations below the threshold 𝑐 < 𝑐𝑥, 𝑛(𝑡) is given by: 

𝑛(𝑡) = 𝑛0𝑒𝛾𝑠𝑙𝑜𝑤𝑡 

Integrating Eqn. 3 of subsection 6 of the section 2 of the main text, the cell density and growth factor 

concentration at the transition are given by:  

𝑐(𝑡 = 𝑡𝑥) = 𝑐𝑥 =
𝜐𝑛0

𝛾𝑠𝑙𝑜𝑤
(𝑒𝛾𝑠𝑙𝑜𝑤𝑡𝑥 − 1) 
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𝑛(𝑡 = 𝑡𝑥) = 𝑛0𝑒𝛾𝑠𝑙𝑜𝑤𝑡𝑥 

 where tx is the time for the transition. Combining equations, we have: 

𝑐𝑥 =
𝜐

𝛾𝑠𝑙𝑜𝑤
(𝑛𝑥 − 𝑛0) ≈

𝜐

𝛾𝑠𝑙𝑜𝑤
𝑛𝑥  

for  𝑛𝑥 ≫ 𝑛0 as is the case with 𝑛𝑥 ≈ 104 cells/ml and 𝑛0 ≈ 100 cells/ml. 

Our estimate for 𝜐 is based on an estimation of production rate of extracellular secretions from two different 

cellular systems: 1) the production of cAMP of starved D. discoideum and 2) the production of fibroblast 

growth factor by 3T3 cells (which are derived from mouse embryos). First, in the D. discoideum starvation 

system authors in Ref. (7) monitored extracellular cAMP production from a high-density system which was 

pulsatile in nature. We averaged the production rate from their work, giving us the high value of 9×103 

molecules/ (cell s). Second, although it was not intended to be a quantitative measurement of the growth 

factor secretion rate ν, authors in Ref. (8) observed the production of fibroblast growth factor due to heat 

shock. Assuming that a single standard size petri dish was used and estimating cellular density at 

confluence, we find a production rate of 400 molecules/ (cell s). 

10. Cluster generated endocrine and paracrine models – stochastic simulations 

We implemented stochastic versions of cluster-generated endocrine and paracrine models as follows. 

MATLAB with SimBiology (Mathworks, US) was used to model this system as shown in Fig. S3. In each 

model, we consider cells to be in one or two states (single or clustered).  

 

Figure S3. Stochastic cluster-generated models. Both endocrine and paracrine models include the 

clustering term described by the clustering rate constant 𝛼. This constant was estimated using the model for 

particle clustering based on velocity-gradient flocculation (see main text) and was estimated to about 𝛼 = 

10-9 s-1. Clustered cells are shown in gray while single cells are shown in white circles. Growth factors are 

shown as white triangles. 

 



7 

 

 
1 D.A. Brock and R.H. Gomer, ``A secreted factor represses cell proliferation in 

Dictyostelium,” Development, 132, 4553 (2005). 

2 C. Franck, W. Ip, A. Bae, N. Franck, E. Bogart and T. T. Le, "Contact-mediated cell-assisted cell 

proliferation in a model eukaryotic single-cell organism: an explanation for the lag phase in shaken cell 

culture.," Phys. Rev. E 77, 041905 (2008). 

3 We appreciate this suggestion from an anonymous referee. 

4 P. Fey, A.S. Kowal, P. Gaudet. K.E. Pilcher, and R. L. Chisholm, ``Protocols for growth and 

development of Dictyostelium discoideum,” Nature Protocols 2, 1307 (2007). 

5 T. Muramoto and J.R. Chubb, J. R. ``Live imaging of the Dictyostelium cell cycle reveals widespread 

S phase during development, a G2 bias in spore differentiation and a premitotic checkpoint,” Development 

135, 1647 (2008). 

6 S. N. Goodman, "Toward Evidence-Based Medical Statistics. 1: The P Value Fallacy.," Annals of 

Internal Medicine, 130, 995 (1999). 

7 G. Gerisch and U. Wick, "Intracellular oscillations and release of cyclic AMP from Dictyostelium 

cells," Biochem and Biophys Research Comm., 65, 364 (1975). 

8 A. Jackson, S. Friedman, X. Zhan, K. A. Engleka, R. Forough and T. Maciag, "Heat shock induces 

the release of fibroblast growth factor 1 from NIH 3T3 cells," Proc. Natl. Acad. Sci. USA, 89, 10691 (1992). 


